Directional guidance of nerve growth cones
Zhexiong Wen and James Q Zheng

The intricate connections of the nervous system are established, in part, by elongating axonal fibers that are directed by complex guidance systems to home in on their specific targets. The growth cone, the major motile apparatus at the tip of axons, explores its surroundings and steers the axon along a defined path to its appropriate target. Significant progress has been made in identifying the guidance molecules and receptors that regulate growth cone pathfinding, the signaling cascades underlying distinct growth cone behaviors, and the cytoskeletal components that give rise to the directional motility of the growth cone. Recent studies have also shed light on the sophisticated mechanisms and new players utilized by the growth cone during pathfinding. It is clear that axon pathfinding requires a growth cone to sample and integrate various signals both in space and in time, and subsequently to coordinate the dynamics of its membrane, cytoskeleton and adhesion to generate specific responses.

Addresses
Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA

Corresponding author: Zheng, James Q (zhengjq@umdnj.edu)

Introduction
Since Cajal’s vivid description of growth cones as ‘battering rams’ that overcome obstacles along their journey to the targets of connectivity, modern microscopy and imaging techniques have enabled us to witness the fascinating behaviors of growth cones in living samples in vitro and in vivo. Growth cones exhibit a range of behaviors along the path to their targets, including acceleration and diminution of migration, pausing, collapse, retraction and bifurcation. Many of these distinct behaviors reflect the pathfinding responses of the growth cone in searching for its appropriate target. Although axon guidance is essential for the initial wiring of neural circuitry, it is also crucial for the re-wiring of regenerating axons that leads to functional recovery of brain circuitry after injury and disease. It is, thus, of immense importance to understand the molecular and cellular mechanisms underlying axonal extension and guidance.

In the developing nervous system, axons are guided to their appropriate targets by extracellular molecules, either permissive and attractive or inhibitory and repulsive. Many evolutionarily conserved families of guidance molecules, including the Netrins, Slits, Semaphorins, and Ephrins, have now been identified and characterized [1–3]. However, sophisticated mechanisms appear to be employed by the growth cone to generate distinct responses to various molecules that are often presented in a spatiotemporal, sometimes overlapping, pattern. An excellent example is the guidance of commissural axons during development. In vertebrates and invertebrates, commissural axons are initially lured to the ventral midline floor plate by attractive molecules including netrins and hedgehog [2,4], which are secreted and present at high concentrations in the floor plate. Once they reach the midline, the neurons lose their responsiveness to the attractive cues, and become sensitive to repellents such as Slit proteins, which were first identified in Drosophila [1]. Three homologs of Drosophila Slit (Slit1–3) and two homologs of its receptor Roundabout (Robo1, 2) have been identified in mammals; the commissural axons fail to cross the midline floor plate in Slit1, 2, 3 triple mutant embryos [5]. Interestingly, Rig-1 (Robo3) functions as a negative regulator to repress premature Slit responsiveness, similar to the function of Commissureless (Comm) in Drosophila [6]. Thus, Slit–Robo interactions function to prevent commissural axons from re-crossing the midline, enabling their projections to travel along the anterior–posterior track guided by Wnt signals [7]. Another example involves the guidance molecules ephrins and their Eph receptors. Recent evidence demonstrates that ephrin–Eph interactions elicit bi-directional communications: ephrins function through Eph receptors to exert repulsive activities, whereas Ephs binding to ephrins elicit backward signaling through ephrin ligands for attraction [8]. Because many growth cones co-express both ephrins and Eph receptors on their surface, the puzzling question is how opposite effects are selectively activated. It was recently shown that ephrin molecules and Eph receptors on the same growth cone surface were segregated into distinct membrane microdomains to mediate opposite guidance responses [9**]. These findings illustrate the complexity and sophistication of the responses of growth cones to a variety of guidance cues. It is clear that there is still much to be learnt about how specific guidance signals are transduced from receptor activation to directed growth cone motility. Given that several comprehensive reviews on guidance have been
Membrane microdomains and growth cone responses

Cells communicate and interact with the extracellular space through the plasma membrane that consists of a mosaic of proteins for receiving stimuli, for signaling in and out of the cell, and for interacting physically with the substrata. Recent studies suggest that the plasma membrane contains microdomains, termed lipid rafts, that are enriched in cholesterol and sphingolipids and, characteristically, are resistant to cold detergent extraction [14,15]. Lipid rafts are thought to be involved in many cellular functions, in particular, signal transduction for extracellular stimuli [14,15]. Many of these functions are also intimately related to the processes involved in neural development, including neurotrophic factor signaling and synaptic plasticity. Recent evidence indicates that membrane lipid rafts play an important part in growth cone migration and pathfinding. Several guidance receptors or receptor complex components associate with the detergent-resistant membrane (DRM) fractions in neurons [9**,16,17**,18]. Disruption of lipid rafts by cholesterol and ganglioside manipulation has resulted in attenuation of guidance responses in vitro [16,19**]. Moreover, recent studies show that ephrin-A and EphA receptors co-existing on the same growth cone surface are probably segregated into microdomains to mediate different signaling pathways [9**], thus reiterating the notion that microdomains on the plasma membrane are functionally important for neuronal signaling. Because ephrin-A5 are glycosyl phosphatidylinositol (GPI)-anchored proteins, it is likely that lipid rafts are involved in ephrin clusters and/or Eph microdomains on the growth cone surface. It is conceivable that microdomains of lipids and proteins can contribute to spatial control and segregation in distinct signaling cascades underlying growth cone pathfinding.

One of the interesting observations on the receptor–raft interactions is that some receptors are only partially associated with lipid rafts at the resting state of the cell, but increase their raft association upon exposure to the ligands [17,19**,20]. Such ligand-induced translocation might be an important mechanism for selective coupling of extracellular stimuli to distinct signaling pathways. Potentially, receptors in the raft- and non-raft-fractions of the plasma membrane could mediate different effects of the extracellular factors. One piece of evidence came from studies on the raft-dependence of multiple effects elicited by brain derived neurotrophic factor (BDNF) on developing neurons. BDNF enhances cell survival, promotes neurite outgrowth, induces chemotraction, and potentiates synaptic transmission, all through the high-affinity trkB receptors. Experimental data indicate that BDNF induced synaptic potentiation depends on trkB in lipid rafts but BDNF enhancement of neuronal survival involves trkB outside the rafts [17**]. In nerve growth cones, BDNF-induced attraction could be abolished by cholesterol depletion but acceleration of growth cone motility was not affected by cholesterol extraction [19**]. These results suggest that membrane rafts might mediate distinct signaling pathways underlying various neuronal functions.

Directional guidance of nerve growth cones requires spatial and temporal control of intracellular signaling that targets growth cone motility for steering. Membrane microdomains have been implicated in the generation of localized signaling in the growth cone. For example, ligand-induced recruitment of guidance receptors could contribute to an asymmetric association of guidance receptors with membrane rafts, thus resulting in localized signal transduction that is essential for translating the extracellular guidance cues into the turning response of the growth cone (Figure 1). Indeed, imaging studies using in situ cold detergent extraction and immunostaining on Xenopus growth cones demonstrated that raft-association of trkB receptors became asymmetrically localized to the side exposing to a higher concentration of BDNF in a gradient [19**]. The notion that membrane microdomains contribute and control spatial signaling across the cell surface has been strongly supported by studies on cell chemotaxis [21]. Similar to growth cone guidance, cell chemotaxis involves the sensing of extracellular chemokine gradients and polarization of the cell for directed movement [22]. In cell chemotaxis induced by the chemokine stromal cell derived factor-1 (SDF-1), a persistent redistribution of lipid raft-associated green fluorescent protein (GFP)-GPI to the cell edges was observed [21]. Interestingly, the SDF-1 receptor CCR5 became highly associated with the ganglioside G\(\text{M}_{1}\)-rich rafts at the leading edge, followed by recruitment and activation of phosphatidylinositol-3 kinase (PI3K)γ. Such polarized or asymmetric distribution of different membrane microdomains could be the key for polarization of signaling and adhesion components in migrating cells. Whether microdomains are involved in recruitment and localization of different signaling components across the growth cone during guidance awaits future study.

Recent studies on non-neuronal cells demonstrate that lipid rafts mediate integrin-induced membrane targeting of Rho GTPases and their coupling to the downstream effectors [23**,24**]. In one of the two complementary studies, integrin-mediated adhesion was found to regulate the coupling of Rac to the downstream effector molecule p21-activated kinase (PAK) by modulating lipid rafts on the plasma membrane [23**]. The working model is that cell adhesion via integrins enables Rac targeting to the membrane rafts and coupling to PAK, whereas cell detachment causes internalization of Rac-associated rafts.
leading to de-coupling of Rac and PAK. This model is supported by the second study in which integrin-mediated adhesion induced both localization of G_{MI}-rich lipid rafts at the leading edge of migrating fibroblasts and coupling of Rho to its effector mDia, the mammalian diaphanous-related formins, to stabilize microtubules for cell migration [24**]. Furthermore, focal adhesion kinase (FAK) was found to have a crucial role in this localized process. Taken together, these findings indicate an exciting role for rafts in controlling polarized signaling and motility in cell migration. Because integrin is involved in many cellular events including axon guidance and, importantly, growth cone turning involves asymmetric adhesion and detachment, it is conceivable that similar mechanisms might also be involved in directional steering of growth cones in response to guidance signals (Figure 1).
Although previous studies showed that growth cone migration and random turning were not affected by raft disruption [19**], different integrin molecules involved in growth cone-substrate adhesion might contribute to the difference in the involvement of rafts in growth cone migration [25]. The possibility that different types of rafts might regulate Rac and Rho coupling to their effectors further indicates the complexity in spatial and temporal control of signaling and motility in migrating cells and growth cones. It will be interesting to see whether we have learnt from migrating non-neuronal cells can be applied to the growth cone. Finally, it should be pointed out that dynamic lipid microdomains represent an attractive model for spatial control of signal transduction at the plasma membrane, but the concept of lipid rafts is still being debated [26]. The experimental findings discussed above, at least, indicate an important role for membrane lipids and/or the lipid environment in guidance signaling and directional motility. Future studies are clearly required to validate the model and to elucidate the molecular interactions occurring at the plasma membrane that generate intricate networks of intracellular signaling underlying specific neuronal functions.

Ca²⁺ signaling in controlling growth cone steering**

Ca²⁺ is an important second messenger that relays extracellular information to directional motility [10]. Growth cone turning induced by several guidance molecules, such as netrin-1, BDNF and myelin associated glycoprotein (MAG), depends on localized **Ca**²⁺ signals in the growth cone [27,28,29]. The intracellular **Ca**²⁺ concentration ([**Ca**²⁺]) in the growth cone is regulated by several cellular processes such as **Ca**²⁺ influx through plasma membrane **Ca**²⁺- ATPases (PMCA) and a Na⁺–**Ca**²⁺ exchanger. Previous work indicates that netrin-1-induced growth cone attraction requires **Ca**²⁺ influx through voltage-dependent **Ca**²⁺- ATPases (VDCCs) including L-type **Ca**²⁺- ATPases on the plasma membrane [27,30]. Recent studies by three groups demonstrate that transient receptor potential (TRP) channels are involved in growth cone turning responses to netrin, BDNF and MAG [31**–33**]. TRP channels comprise a large group of non-selective cation channels that are involved in regulation of many cellular events such as neurite extension and growth cone morphology [34]. A role of TRP channels in guidance was further supported by the *in vivo* data that knockdown of *Xenopus* TRP channels by morpholino antisense resulted in guidance defects in commissural axons crossing the midline [32**]. These findings thus indicate that members of the TRP channel family function as key mediators for the **Ca**²⁺ influx that regulates axon guidance during development. It remains to be determined, however, how TRP channels are specifically activated by each guidance molecule. Furthermore, growth cone attraction induced by BDNF or netrin-1 was completely blocked by TRP channel knockdown in two of these papers [31**–33**]. However, knockdown of *Xenopus* TRP1 (XTRP1) only blocked MAG-induced repulsion but, interestingly, converted BDNF- and netrin-1-induced attraction to repulsion [32**]. Such a discrepancy might reflect the difference in the knockdown approaches used and the extent of protein reduction. Because both the baseline [**Ca**²⁺], and the local [**Ca**²⁺]_i, can influence the direction of **Ca**²⁺-induced growth cone turning [35**,36], TRP channels could contribute to either or both of these two **Ca**²⁺ levels to result in repulsion or blockage of turning responses. More studies are clearly required to understand how exactly TRP channels contribute to **Ca**²⁺ signaling in growth cone guidance.

Different local **Ca**²⁺ signals mediate bi-directional responses of the growth cone. Recent studies have begun to illuminate the downstream effectors linking different **Ca**²⁺ signals to opposite turning responses. On the one hand, large **Ca**²⁺ transients in filopodia were found to activate **Ca**²⁺-sensitive protease calpain and resulted in growth cone repulsion [37]. On the other hand, growth cone turning induced by extracellular guidance gradients was found to involve relatively small asymmetric [**Ca**²⁺], elevation that could mediate bi-directional responses [27,28,38]. In particular, a small local **Ca**²⁺ was found to mediate repulsion, whereas a modest elevation of [**Ca**²⁺], resulted in attraction [29]. Studies using direct focal elevation of [**Ca**²⁺], by photolysis of caged **Ca**²⁺ showed that **Ca**²⁺-calmodulin-dependent protein kinase II (CaMKII) and calcineurin (CaN)-phosphatase 1 (PP1) act in concert as a switch that controls growth cone responses to different **Ca**²⁺ signals [35**]. Although the downstream targets of CaMKII and PP1 are uncertain, these results suggest a model in which CaMKII and PP1 could function as a pair that controls the balance of phosphorylation and dephosphorylation of the downstream components involved in regulating growth motility and directional steering (Figure 1).

Does focal adhesion function as a convergence point?

The growth cone advances by cytoskeleton-driven motility that is coupled by selective adhesion to the extracellular matrix. Transmission of growth cone traction force through adhesion–cytoskeletal linkage is essential for growth cone migration [39]. Although it is known that guidance signaling often targets the cytoskeletal dynamics in the growth cone to exert its influences on growth cone motility and behaviors (for a recent review, see Kalil and Dent [11]), recent studies indicate that cell adhesion could also be the primary target of guidance signaling. For example, activation of the repulsive Robo receptors inhibited N-cadherin-mediated cell adhesion to induce repulsion [40]. Moreover, the netrin-1 receptor deleted in colorectal cancer (DCC) directly interacts with
adhesion components FAK, Src and Fyn, and DCC is tyrosine phosphorylated upon netrin-1 stimulation. Disruption of FAK, Src or Fyn signaling was able to block the netrin-induced axon outgrowth and turning response [41–43]. Because cell adhesion and cytoskeletal dynamics are tightly linked, spatial and temporal regulation of growth cone–substrate adhesion might be one important mechanism that regulates guidance responses.

The findings that DCC is tyrosine phosphorylated and that netrin-1 stimulates tyrosine phosphorylation of FAK and Src families of kinases reinforce an important role for tyrosine phosphorylation in growth cone motility and guidance. Tyrosine phosphorylation is involved in the downstream signals of guidance receptors [45–48]. For example, tyrosine phosphorylation of UNC-40, a C. elegans homolog of DCC, has been observed, and UNC-40 signaling is regulated by the receptor protein tyrosine phosphatase (RPTP) CLR-1 [49,50]. Previous work indicates that FAK might bind to cytoskeleton-associated proteins such as paxillin to modulate the cytoskeletal dynamics [51]. Recently, Robles et al. demonstrated that BDNF can stimulate Src kinase to phosphorylate Cdc42 effector p21-activated kinase (PAK) and regulate the growth cone motility. These results suggest that FAK–Src might act as a crucial mediator between guidance cue receptors and rearrangement of the cytoskeleton to regulate growth cone responses. It should be mentioned that both BDNF and netrin-1 involve Ca2+ and CaMKII in inducing growth cone turning [10]; therefore, these findings indicate a potential crosstalk of signaling pathways involving Ca2+-serine and threonine phosphorylation and tyrosine phosphorylation. FAK interacts with multiple signaling pathways that affect various cellular processes [52,53]. In particular, FAK contains several tyrosine and serine phosphorylation sites, activated FAK recruits Src, and FAK and Src stimulate each other. Therefore, it is plausible that FAK could function as the converging point of signaling pathways involving serine and threonine phosphorylation (e.g. by Ca2+-CaMKII) and tyrosine phosphorylation through Src (Figure 1). Previous studies have shown a role for FAK Ser732 phosphorylation by cyclin-dependent kinase 5 (Gdk5) in neuronal migration [54]. Whether serine phosphorylation of FAK plays a role in growth cone guidance remains to be examined. Nonetheless, a growth cone migrates by integrating distinct signaling pathways and by coordinating its cytoskeletal dynamics and adhesion to complete its journey for specific connections.

Conclusions and future directions

Although several components in the signaling pathways that control the steering of growth cones have been identified and described, none of these pathways are yet complete. It is still not well understood how extra-cellular guidance cues generate specific signals inside the growth cone, how different signaling pathways are coordinated, or what key components downstream of the Rho GTPases regulate growth cone turning. A deeper understanding of the guidance mechanisms will require a detailed understanding of intricate signaling cascades that propagate from the membrane through the intracellular space to target the dynamics of the cytoskeleton and of adhesion. The challenge is that many of these events are spatially and temporally controlled in the growth cone and a complete understanding will require arrays of analyses on the chemical reactions occurring inside the cell in real time.

Acknowledgements

The authors would like to thank J Alder (UMNJ-R.W. Johnson Medical School, Department of Neuroscience and Cell Biology) for her valuable comments on the manuscript. The authors are supported by research grants NS 036241 from National Institutes of Health (NIH) and IBN-0109776 from the National Science Foundation.

References and recommended reading

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest

23. de la Poza MA, Alderson NB, Kissos WB, Chiang HH, Anderson RG, Schwartz MA: Integrins regulate Rac targeting by internalization of membrane domains. Science 2004, 303:839-842. This is one of two papers published back-to-back. In this study, the authors show that Rac was not only associated and co-localized with membrane rafts but its coupling to PAK depended on the integrity of lipid rafts. Raft disruption prevented the targeting of Rac to the plasma membrane and coupling to PAK, suggesting that cell adhesion via integrins regulates plasma membrane targeting of Rac by preventing internalization of the lipid rafts.

24. Palazzo AF, Eng CH, Schlaepfer DD, Marcantonio EE, Gundersen GG: Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science 2004, 303:836-839. This is the second report of the back-to-back papers. The authors find that integrin-mediated adhesion induced both the localization of

29. Henley JR, Huang KH, Wang D, Poo MM: Calcium mediates bidirectional growth cone guidance by netrin-associated glycoprotein. Neuron 2004, 44:903-916. This study provides experimental evidence that Ca2+ mediates MAG induced growth cone repulsion. The authors further show that different Ca2+ signals mediate bi-directional turning responses induced by MAG through CAMP manipulation: a small local Ca2+ mediates repulsion, whereas a modest elevation of [Ca2+] results in attraction.

33. Wang GX, Poo MM: Requirement of TRPC channels in netrin-1-induced chemotrophic turning of nerve growth cones. Nature 2005, 434:898-904. These three studies [31*–33*] provide direct evidence that TRP channels are involved in Ca2+-dependent growth cone guidance. The authors find that TRP channels are required for growth cone turning responses to netrin, BDNF, and MAG. The work by Li et al. [31*] showed the requirement of TRP channels in BDNF-induced attraction of mammalian cerebellar growth cones. The work by Wang and Poo [33*] provided the evidence that Xenopus TRP homolog XTRP1 is involved in netrin-1 guidance of Xenopus growth cones. The work by Shim et al. [32*] provides evidence that XTRP1 is required of guidance by BDNF, netrin-1, and MAG. They also show that XTRP1 is involved in commissural axon guidance in vivo.

35. Wen Z, Guirland C, Ming GL, Zheng JQ: A CaMKII/calcineurin switch controls the direction of Ca2+-dependent growth cone guidance. Neuron 2004, 43:835-846. This work has utilized a focal laser-induced photolysis technique directly to generate local Ca2+ elevation in the growth cone. The authors find that TRPC and calcineurin function as downstream effectors of Ca2+ signals, providing a switch-like mechanism to control the direction of Ca2+-dependent growth cone turning: a relatively large local Ca2+ elevation preferentially activates CaMKII to induce attraction, whereas a modest local Ca2+ signal predominately functions through calcineurin and phosphatase-1 (PP1) to produce repulsion.

43. Liu G, Beggs H, Jurgensen C, Park HT, Tang H, Gorski J, Jones KR, Reichardt LF, Wu J, Rao Y: Netrin requires focal adhesion kinase and Src family kinases for axon outgrowth and attraction. Nat Neurosci 2004, 7:1222-1232. These three sets of authors find that the netrin-1 receptor DCC directly interacts with adhesion components FAK, Src and Fyn, and that DCC was tyrosine phosphorylated upon netrin-1 stimulation. Disruption of FAK, Src or Fyn signaling pathways blocks the netrin-induced axon outgrowth or turning response.

45. Robles E, Woo S, Gomez TM: Src-dependent tyrosine phosphorylation at the tips of growth cone filopodia promotes extension. J Neurosci 2005, 25:7669-7681. The authors find that Src kinase might phosphorylate Cdc42 effector p21-activated kinase (PAK) and regulate the growth cone motility when stimulated by guidance cue BDNF. This suggests that FAK and Src might function as crucial mediators between guidance cue receptors and cytoskeleton.

49. Chang C, Yu TW, Bargmann CT, Tessier-Lavigne M: Inhibition of netrin-mediated axon attraction by a receptor protein tyrosine phosphatase. Science 2004, 305:103-106. The authors find that UNC-40 (DCC) signaling is regulated by the receptor protein tyrosine phosphatase (RPTP) CLR-1 in C. elegans, suggesting that tyrosine phosphorylation and dephosphorylation play a key role in transduction of downstream signals of guidance receptors.

54. Xie Z, Sanada K, Samuels BA, Shih H, Tsai LH: Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration. Cell 2003, 114:469-482.