Publications

Recent and previous key publications 

1. Developmental specification and network integration of V1 inhibitory interneurons in spinal motor circuits.

Original Articles (last 5 years and previous years selected)

Fletcher EV, Chalif JI, Rotterman TM, Pagiazitis JG, Alstyne MV, Sivakumar N, Rabinowitz JE, Pellizzoni L, Alvarez FJ, Mentis GZ. (2025) Synaptic imbalance and increased inhibition impair motor function in SMA. Science Advances (in press)           bioRxiv [Preprint]. 2024 Sep 1:2024.08.30.610545.   https://doi.org/10.1101/2024.08.30.610545 

Worthy AE, Anderson JT, Lane AR, Gomez-Perez L, Wang AA, Griffith RW, Rivard AF, Bikoff JB, Alvarez FJ (2024) Spinal V1 inhibitory interneuron clades differ in birthdate, projections to motoneurons and heterogeneity. eLife 13:RP95172   https://doi.org/10.7554/elife.95172 

Mistretta OC, Wood RL, English AW, Alvarez FJ (2024) Air-stepping in the neonatal mouse: a powerful tool for analyzing early stages of rhythmic limb movement development J. Neurophysiology 131(2):321-337  https://doi.org/10.1152/jn.00227.2023 

Lane AR, Cogdell IC, Jessell TM, Bikoff JB, Alvarez FJ (2021) Genetic targeting of adult Renshaw cells using a Calbindin 1 destabilized Cre allele for intersection with Parvalbumin or Engrailed1 Scientific Reports 11(1):19861  https://doi.org/10.1038/s41598-021-99333-6 

Bikoff JB, Gabitto MI, Rivard AF, Drobac E, Machado TA, Miri A, Brenner-Morton S, Famojure E, Diaz, C, Alvarez FJ, Mentis GZ, Jessell TM (2016) Spinal inhibitory interneuron diversity defines variant motor microcircuits. Cell 165(1):207-219.
https://doi-org.proxy.library.emory.edu/10.1016/j.cell.2016.01.027

Siembab VC, Gomez-Perez, L, Rotterman TM, Shneider NA, Alvarez FJ (2016) Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells. J. Comp. Neurol. 524(9):1892-1919.
https://doi-org.proxy.library.emory.edu/10.1002/cne.23946

Zhang J, Lanuza GM, Wang Z, Siembab VC, Zhang Y, Velasquez T, Alvarez FJ, Frank E, Goulding M (2014) V1 and V2b interneurons generate the alternating flexor-extensor motor activity vertebrates use for locomotion and protective reflexes. Neuron 82(1):138-150.
https://doi-org.proxy.library.emory.edu/10.1016/j.neuron.2014.02.013

Benito-Gonzalez A, Alvarez FJ (2012) Renshaw cells and Ia inhibitory interneurons are generated at different times from p1 progenitors and differentiate shortly after exiting the cell cycle. J. Neurosci. 32(4): 1156-1170. 
https://doi-org.proxy.library.emory.edu/10.1523/JNEUROSCI.3630-12.2012

Alvarez FJ, Jonas P, Sapir T. Hartley R, Geiman EJ, Todd A, Goulding, M (2005) Postnatal phenotype and localization of spinal cord V1 derived interneurons. J. Comp. Neurol. 493: 177-192. 
https://doi-org.proxy.library.emory.edu/10.1002/cne.20711

Sapir T, Geiman EJ, Wang Z, Velasquez T, Frank E, Alvarez FJ, Goulding M (2004) Pax6 and En1 Regulate Two Critical Aspects of Renshaw Cell Development. J. Neurosci. 24: 1255-1264. 
https://doi-org.proxy.library.emory.edu/10.1523/JNEUROSCI.3187-03.2004

Invited Prespectives

Alvarez FJ (2018) Spinal Interneurons "a La Carte". Neuron 100:3-6.
https://doi-org.proxy.library.emory.edu/10.1016/j.neuron.2018.09.034 

Reviews

Alvarez FJ, Benito-Gonzalez A, Siembab VC (2013) Principles of interneuron development learned from Renshaw cells and the motoneuron recurrent inhibitory circuit. Ann NY Acad Sciences 1279(1):22-31.
https://doi-org.proxy.library.emory.edu/10.1111/nyas.12084

Alvarez FJ, Fyffe REW (2007) The continuing case for the Renshaw cell. J. Physiol. 584: 31-45.
https://doi-org.proxy.library.emory.edu/10.1113/jphysiol.2007.136200

2. Circuit modifications after peripheral nerve injuries and neuroinflammation.

Original Articles (last five years and previous years selected)

Rotterman TM, Haley-Johnson Z, Chopra T, Chang E, Zhang S, McCallum W, Fisher S, Franklin H, Alvarez M, Cope TC, Alvarez FJ (2024) Modulation of central synapse remodeling after remote peripheral nerve injuries by CCL2-CCR2 axis and microglia. Cell Reports 43(2):113776   https://doi.org/10.1016/j.celrep.2024.113776 

Arbat-Plana A, Bolivar S, Navarro X, Udina E, Alvarez FJ (2023) Massive loss of proprioceptive Ia synapses in rat spinal motoneurons after nerve crush injuries in the postnatal period. eNeuro 10(2).   https://doi.org/10.1523/eneuro.0436-22.2023 

Rotterman TM, Alvarez FJ (2020) Microglia dynamics and interactions with motoneurons axotomized after nerve injuries revealed by two-photon microscopy. Sci. Rep. 10:8648
https://doi.org/10.1038/s41598-020-65363-9        use link: https://rdcu.be/b4pQA 

Rotterman TM, Akhter ET, Lane AR, MacPherson KP, García VV, Tansey MG, Alvarez FJ (2019) Spinal motor circuit synaptic plasticity after peripheral nerve injury depends on microglia activation and a CCR2 mechanism. J. Neurosci 39(18):3412-3433. 
https://www-jneurosci-org.proxy.library.emory.edu/content/39/18/3412.long 

Rotterman TM, Nardelli P, Cope TC, Alvarez FJ (2014) Normal distribution of VGLUT1 synapses on spinal motoneuron dendrites and their reorganization after nerve injury. J. Neurosci. 34:3475-3492.
https://doi-org.proxy.library.emory.edu/10.1523/JNEUROSCI.4768-13.2014

Alvarez FJ, Titus HE, Bullinger KL, Kraszpulski M, Nardelli P, Cope TC (2011) Permanent central synaptic disconnection of proprioceptors  after nerve injury and regeneration: I. Loss of VGLUT1/IA synapses on motoneurons. J. Neurophysiol. 106(5): 2450-2470
https://doi-org.proxy.library.emory.edu/10.1152/jn.01095.2010

Reviews

Pottorf TS, Rotterman TM, McCallum WM, Haley-Johnson ZA, Alvarez FJ (2022) The Role of Microglia in Neuroinflammation of the Spinal Cord after Peripheral Nerve Injury. Cells 11(13): 2083   https://doi.org/10.3390/cells11132083 

Alvarez FJ,Rotterman TM, Akhter ET, Lane AR, Englihs AW, Cope TC (2020) Synaptic plasticity on motoneurons after axotomy: A necessary change in paradigm. Front Mol Neurosci 13:68
https://doi.org/10.1016/j.celrep.2024.113776   

Alvarez FJ, Bullinger K, Titus HE, Nardelli, P, Cope TC (2010) Central structural reorganization of Ia afferent synapses after peripheral nerve injuries. Ann NY Acad Sciences 1198: 231- 241
https://doi-org.proxy.library.emory.edu/10.1111/j.1749-6632.2010.05459.x

 

3. Mechanisms regulating KCC2 expression in axotomized motoneurons and its role in motor axon regeneration.

Publications (last five years and previous years selected)

Wood RL, Calvo PM, McCallum WM, English AW, Alvarez FJ (2025) GABA and Glycine Synaptic Release on Axotomized Motoneuron Cell Bodies Promotes Motor Axon Regeneration. Eur J Neurosci. 2025 61(5):e70045  https://doi.org/10.1111/ejn.70045 

Capilla-Lopez J, Hernandez RG, Carrero-Rojas G, Calvo PM, Alvarez FJ, de la Cruz RR, Pastor AM (2024) VEGF, but not BDNF, prevents the downregulation of KCC2 induced by axotomy in extraocular motoneurons. Int. J. Mol. Sci. 25:9942  https://doi.org/10.3390/ijms25189942 

Calvo PM, de la Cruz RR, Pastor AM, Alvarez FJ (2023) Specific preservation of KCC2 in axotomized abducens motoneurons and its enhancement by VEGF. Brain Structure and Function 228(3-4):967-984.

Akhter ET, Griffith RW, English AW, Alvarez FJ (2019) Removal of the potassium chloride co-transporter from the somatodendritic membrane of axotomized motoneurons is independent of BDNF/TrkB signaling but is controlled by neuromuscular innervation. eNeuro. 16;6(5).
https://doi.org/10.1523/ENEURO.0172-19.2019 

Reviews

Akhter ET, English AW, Alvarez FJ (2020) Chapter 19: "Neuronal Chloride Homeostasis and nerve injury" in Neuronal Chloride Transporters in Health and Disease. Pages 517-547. Edited by Xin Tang (MIT). Elsevier, Academic Press. ISBN  978-0-12-815318-5
https://doi.org/10.1016/C2017-0-02771-4

 

Dr. Francisco J. Alvarez complete bibliography

Dr. Alvarez's complete bibliography at NCBI.